[Optimization that reduce the accesses to an array]
In Section-2, I show the final version of the Stockham algorithm, From this algorithm, with a little ingenuity, we can reduce the accesses to an array. First of all, I show the List-7 again.
List-7: Final version of the Stockham Algorithm
#include <complex>
#include <cmath>
typedef std::complex<double> complex_t;
void fft0(int n, int s, bool eo, complex_t* x, complex_t* y)
// n : sequence length
// s : stride
// eo : x is output if eo == 0, y is output if eo == 1
// x : input sequence(or output sequence if eo == 0)
// y : work area(or output sequence if eo == 1)
{
const int m = n/2;
const double theta0 = 2*M_PI/n;
if (n == 1) { if (eo) for (int q = 0; q < s; q++) y[q] = x[q]; }
else {
for (int p = 0; p < m; p++) {
const complex_t wp = complex_t(cos(p*theta0), -sin(p*theta0));
for (int q = 0; q < s; q++) {
const complex_t a = x[q + s*(p + 0)];
const complex_t b = x[q + s*(p + m)];
y[q + s*(2*p + 0)] = a + b;
y[q + s*(2*p + 1)] = (a - b) * wp;
}
}
fft0(n/2, 2*s, !eo, y, x);
}
}
void fft(int n, complex_t* x) // Fourier transform
// n : sequence length
// x : input/output sequence
{
complex_t* y = new complex_t[n];
fft0(n, 1, 0, x, y);
delete[] y;
for (int k = 0; k < n; k++) x[k] /= n;
}
void ifft(int n, complex_t* x) // Inverse Fourier transform
// n : sequence length
// x : input/output sequence
{
for (int p = 0; p < n; p++) x[p] = conj(x[p]);
complex_t* y = new complex_t[n];
fft0(n, 1, 0, x, y);
delete[] y;
for (int k = 0; k < n; k++) x[k] = conj(x[k]);
}
If we look at this code carefully,
when n == 1 in fft0,
this code does not calculate anything, this code does the copy only.
If we substitute a calculation result into the destination array beforehand,
we can remove this copy.
If I rewrite this code to such a code, the program will be as follows.
List-8: The Stockham algorithm that reduce the accesses to an array
#include <complex>
#include <cmath>
typedef std::complex<double> complex_t;
void fft0(int n, int s, bool eo, complex_t* x, complex_t* y)
// n : sequence length
// s : stride
// eo : x is output if eo == 0, y is output if eo == 1
// x : input sequence(or output sequence if eo == 0)
// y : work area(or output sequence if eo == 1)
{
const int m = n/2;
const double theta0 = 2*M_PI/n;
if (n == 2) {
complex_t* z = eo ? y : x;
for (int q = 0; q < s; q++) {
const complex_t a = x[q + 0];
const complex_t b = x[q + s];
z[q + 0] = a + b;
z[q + s] = a - b;
}
}
else if (n >= 4) {
for (int p = 0; p < m; p++) {
const complex_t wp = complex_t(cos(p*theta0), -sin(p*theta0));
for (int q = 0; q < s; q++) {
const complex_t a = x[q + s*(p + 0)];
const complex_t b = x[q + s*(p + m)];
y[q + s*(2*p + 0)] = a + b;
y[q + s*(2*p + 1)] = (a - b) * wp;
}
}
fft0(n/2, 2*s, !eo, y, x);
}
}
void fft(int n, complex_t* x) // Fourier transform
// n : sequence length
// x : input/output sequence
{
complex_t* y = new complex_t[n];
fft0(n, 1, 0, x, y);
delete[] y;
for (int k = 0; k < n; k++) x[k] /= n;
}
void ifft(int n, complex_t* x) // Inverse Fourier transform
// n : sequence length
// x : input/output sequence
{
for (int p = 0; p < n; p++) x[p] = conj(x[p]);
complex_t* y = new complex_t[n];
fft0(n, 1, 0, x, y);
delete[] y;
for (int k = 0; k < n; k++) x[k] = conj(x[k]);
}
As a side effect,
because the butterfly operation can be simplified when n == 2,
we can also erase useless multiplication of only to multiply 1.
By the way, I made the FFT library using this algorithm. If you are interested, please to this page.