[Optimization by AVX of the Stockham FFT]
In previous page, I show the Stockham algorithm that reduce the accesses to an array. When we apply Intel AVX to this, we can optimize it further. First of all, I show the List-8 again. Based on this algorithm, I will rewrite each operation by Intel AVX.
List-8: The Stockham algorithm that reduce the accesses to an array
#include <complex> #include <cmath> typedef std::complex<double> complex_t; void fft0(int n, int s, bool eo, complex_t* x, complex_t* y) // n : sequence length // s : stride // eo : x is output if eo == 0, y is output if eo == 1 // x : input sequence(or output sequence if eo == 0) // y : work area(or output sequence if eo == 1) { const int m = n/2; const double theta0 = 2*M_PI/n; if (n == 2) { complex_t* z = eo ? y : x; for (int q = 0; q < s; q++) { const complex_t a = x[q + s*0]; const complex_t b = x[q + s*1]; z[q + s*0] = a + b; z[q + s*1] = a - b; } } else if (n >= 4) { for (int p = 0; p < m; p++) { const complex_t wp = complex_t(cos(p*theta0), -sin(p*theta0)); for (int q = 0; q < s; q++) { const complex_t a = x[q + s*(p + 0)]; const complex_t b = x[q + s*(p + m)]; y[q + s*(2*p + 0)] = a + b; y[q + s*(2*p + 1)] = (a - b) * wp; } } fft0(n/2, 2*s, !eo, y, x); } } void fft(int n, complex_t* x) // Fourier transform // n : sequence length // x : input/output sequence { complex_t* y = new complex_t[n]; fft0(n, 1, 0, x, y); delete[] y; for (int k = 0; k < n; k++) x[k] /= n; } void ifft(int n, complex_t* x) // Inverse Fourier transform // n : sequence length // x : input/output sequence { for (int p = 0; p < n; p++) x[p] = conj(x[p]); complex_t* y = new complex_t[n]; fft0(n, 1, 0, x, y); delete[] y; for (int k = 0; k < n; k++) x[k] = conj(x[k]); }
Here, I will rewrite only the portion that can be easily rewritten to AVX. Then, the program will be as follows.
List-9: AVXed Stockham Algorithm
#include <complex> #include <cmath> #include <immintrin.h> struct complex_t { double Re, Im; complex_t(const double& x, const double& y) : Re(x), Im(y) {} }; inline complex_t operator+(const complex_t& x, const complex_t& y) { return complex_t(x.Re + y.Re, x.Im + y.Im); } inline complex_t operator-(const complex_t& x, const complex_t& y) { return complex_t(x.Re - y.Re, x.Im - y.Im); } inline complex_t operator*(const complex_t& x, const complex_t& y) { return complex_t(x.Re*y.Re - x.Im*y.Im, x.Re*y.Im + x.Im*y.Re); } __m256d mulpz2(const __m256d ab, const __m256d xy) // Multiplication of complex numbers { const __m256d aa = _mm256_unpacklo_pd(ab, ab); const __m256d bb = _mm256_unpackhi_pd(ab, ab); const __m256d yx = _mm256_shuffle_pd(xy, xy, 5); return _mm256_addsub_pd(_mm256_mul_pd(aa, xy), _mm256_mul_pd(bb, yx)); } void fft0(int n, int s, bool eo, complex_t* x, complex_t* y) // n : sequence length // s : stride // eo : x is output if eo == 0, y is output if eo == 1 // x : input sequence(or output sequence if eo == 0) // y : work area(or output sequence if eo == 1) { const int m = n/2; const double theta0 = 2*M_PI/n; if (n == 2) { complex_t* z = eo ? y : x; if (s == 1) { double* xd = &x->Re; double* zd = &z->Re; const __m128d a = _mm_load_pd(xd + 2*0); const __m128d b = _mm_load_pd(xd + 2*1); _mm_store_pd(zd + 2*0, _mm_add_pd(a, b)); _mm_store_pd(zd + 2*1, _mm_sub_pd(a, b)); } else { for (int q = 0; q < s; q += 2) { double* xd = &(x + q)->Re; double* zd = &(z + q)->Re; const __m256d a = _mm256_load_pd(xd + 2*0); const __m256d b = _mm256_load_pd(xd + 2*s); _mm256_store_pd(zd + 2*0, _mm256_add_pd(a, b)); _mm256_store_pd(zd + 2*s, _mm256_sub_pd(a, b)); } } } else if (n >= 4) { if (s == 1) { for (int p = 0; p < m; p++) { const complex_t wp = complex_t(cos(p*theta0), -sin(p*theta0)); const complex_t a = x[p + 0]; const complex_t b = x[p + m]; y[2*p + 0] = a + b; y[2*p + 1] = (a - b) * wp; } } else { for (int p = 0; p < m; p++) { const double cs = cos(p*theta0); const double sn = sin(p*theta0); const __m256d wp = _mm256_setr_pd(cs, -sn, cs, -sn); for (int q = 0; q < s; q += 2) { double* xd = &(x + q)->Re; double* yd = &(y + q)->Re; const __m256d a = _mm256_load_pd(xd + 2*s*(p + 0)); const __m256d b = _mm256_load_pd(xd + 2*s*(p + m)); _mm256_store_pd(yd + 2*s*(2*p + 0), _mm256_add_pd(a, b)); _mm256_store_pd(yd + 2*s*(2*p + 1), mulpz2(wp, _mm256_sub_pd(a, b))); } } } fft0(n/2, 2*s, !eo, y, x); } } void fft(int n, std::complex<double>* x) // Fourier transform // n : sequence length // x : input/output sequence { complex_t* y = (complex_t*) _mm_malloc(n*sizeof(complex_t), 32); complex_t* z = (complex_t*) _mm_malloc(n*sizeof(complex_t), 32); for (int p = 0; p < n; p++) { y[p].Re = x[p].real(); y[p].Im = x[p].imag(); } fft0(n, 1, 0, y, z); for (int k = 0; k < n; k++) x[k] = std::complex<double>(y[k].Re/n, y[k].Im/n); _mm_free(z); _mm_free(y); } void ifft(int n, std::complex<double>* x) // Inverse Fourier transform // n : sequence length // x : input/output sequence { complex_t* y = (complex_t*) _mm_malloc(n*sizeof(complex_t), 32); complex_t* z = (complex_t*) _mm_malloc(n*sizeof(complex_t), 32); for (int p = 0; p < n; p++) { y[p].Re = x[p].real(); y[p].Im = -x[p].imag(); } fft0(n, 1, 0, y, z); for (int k = 0; k < n; k++) x[k] = std::complex<double>(y[k].Re, -y[k].Im); _mm_free(z); _mm_free(y); }
Next, I show full AVXed version of the Stockham algorithm. The program will be as follows.
List-10: Full AVXed Stockham Algorithm
#include <complex> #include <cmath> #include <immintrin.h> struct complex_t { double Re, Im; }; __m256d mulpz2(const __m256d ab, const __m256d xy) // Multiplication of complex numbers { const __m256d aa = _mm256_unpacklo_pd(ab, ab); const __m256d bb = _mm256_unpackhi_pd(ab, ab); const __m256d yx = _mm256_shuffle_pd(xy, xy, 5); return _mm256_addsub_pd(_mm256_mul_pd(aa, xy), _mm256_mul_pd(bb, yx)); } void fft0(int n, int s, bool eo, complex_t* x, complex_t* y) // n : sequence length // s : stride // eo : x is output if eo == 0, y is output if eo == 1 // x : input sequence(or output sequence if eo == 0) // y : work area(or output sequence if eo == 1) { const int m = n/2; const double theta0 = 2*M_PI/n; if (n == 2) { complex_t* z = eo ? y : x; if (s == 1) { double* xd = &x->Re; double* zd = &z->Re; const __m128d a = _mm_load_pd(xd + 2*0); const __m128d b = _mm_load_pd(xd + 2*1); _mm_store_pd(zd + 2*0, _mm_add_pd(a, b)); _mm_store_pd(zd + 2*1, _mm_sub_pd(a, b)); } else { for (int q = 0; q < s; q += 2) { double* xd = &(x + q)->Re; double* zd = &(z + q)->Re; const __m256d a = _mm256_load_pd(xd + 2*0); const __m256d b = _mm256_load_pd(xd + 2*s); _mm256_store_pd(zd + 2*0, _mm256_add_pd(a, b)); _mm256_store_pd(zd + 2*s, _mm256_sub_pd(a, b)); } } } else if (n >= 4) { if (s == 1) { for (int p = 0; p < m; p += 2) { const double cs0 = cos((p+0)*theta0); const double sn0 = sin((p+0)*theta0); const double cs1 = cos((p+1)*theta0); const double sn1 = sin((p+1)*theta0); const __m256d wp = _mm256_setr_pd(cs0, -sn0, cs1, -sn1); double* xd = &(x + p)->Re; double* yd = &(y + 2*p)->Re; const __m256d a = _mm256_load_pd(xd + 2*0); const __m256d b = _mm256_load_pd(xd + 2*m); const __m256d aA = _mm256_add_pd(a, b); const __m256d bB = mulpz2(wp, _mm256_sub_pd(a, b)); const __m256d ab = _mm256_permute2f128_pd(aA, bB, 0x20); const __m256d AB = _mm256_permute2f128_pd(aA, bB, 0x31); _mm256_store_pd(yd + 2*0, ab); _mm256_store_pd(yd + 2*2, AB); } } else { for (int p = 0; p < m; p++) { const double cs = cos(p*theta0); const double sn = sin(p*theta0); const __m256d wp = _mm256_setr_pd(cs, -sn, cs, -sn); for (int q = 0; q < s; q += 2) { double* xd = &(x + q)->Re; double* yd = &(y + q)->Re; const __m256d a = _mm256_load_pd(xd + 2*s*(p + 0)); const __m256d b = _mm256_load_pd(xd + 2*s*(p + m)); _mm256_store_pd(yd + 2*s*(2*p + 0), _mm256_add_pd(a, b)); _mm256_store_pd(yd + 2*s*(2*p + 1), mulpz2(wp, _mm256_sub_pd(a, b))); } } } fft0(n/2, 2*s, !eo, y, x); } } void fft(int n, std::complex<double>* x) // Fourier transform // n : sequence length // x : input/output sequence { complex_t* y = (complex_t*) _mm_malloc(n*sizeof(complex_t), 32); complex_t* z = (complex_t*) _mm_malloc(n*sizeof(complex_t), 32); for (int p = 0; p < n; p++) { y[p].Re = x[p].real(); y[p].Im = x[p].imag(); } fft0(n, 1, 0, y, z); for (int k = 0; k < n; k++) x[k] = std::complex<double>(y[k].Re/n, y[k].Im/n); _mm_free(z); _mm_free(y); } void ifft(int n, std::complex<double>* x) // Inverse Fourier transform // n : sequence length // x : input/output sequence { complex_t* y = (complex_t*) _mm_malloc(n*sizeof(complex_t), 32); complex_t* z = (complex_t*) _mm_malloc(n*sizeof(complex_t), 32); for (int p = 0; p < n; p++) { y[p].Re = x[p].real(); y[p].Im = -x[p].imag(); } fft0(n, 1, 0, y, z); for (int k = 0; k < n; k++) x[k] = std::complex<double>(y[k].Re, -y[k].Im); _mm_free(z); _mm_free(y); }
By the way, I made the FFT library using Stockham algorithm and Intel AVX. If you are interested, please to this page.