[Kinds of Stockham Algorithms]
In this page, I organized kinds of Stockham algorithms. Please refer to "Introduction to the Stockham FFT" for details.
Type-1(DIF)
#include <complex>
#include <cmath>
typedef std::complex<double> complex_t;
void fft0(int n, int s, bool eo, complex_t* x, complex_t* y)
{
const int m = n/2;
const double theta0 = 2*M_PI/n;
if (n == 1) { if (eo) for (int q = 0; q < s; q++) y[q] = x[q]; }
else {
for (int p = 0; p < m; p++) {
const complex_t wp = complex_t(cos(p*theta0), -sin(p*theta0));
for (int q = 0; q < s; q++) {
const complex_t a = x[q + s*(p + 0)];
const complex_t b = x[q + s*(p + m)];
y[q + s*(2*p + 0)] = a + b;
y[q + s*(2*p + 1)] = (a - b) * wp;
}
}
fft0(n/2, 2*s, !eo, y, x);
}
}
void fft(int n, complex_t* x)
{
complex_t* y = new complex_t[n];
fft0(n, 1, 0, x, y);
delete[] y;
for (int k = 0; k < n; k++) x[k] /= n;
}
void ifft(int n, complex_t* x)
{
for (int p = 0; p < n; p++) x[p] = conj(x[p]);
complex_t* y = new complex_t[n];
fft0(n, 1, 0, x, y);
delete[] y;
for (int k = 0; k < n; k++) x[k] = conj(x[k]);
}
Type-1(DIT)
#include <complex>
#include <cmath>
typedef std::complex<double> complex_t;
void fft0(int n, int s, bool eo, complex_t* x, complex_t* y)
{
const int m = n/2;
const double theta0 = 2*M_PI/n;
if (n == 1) { if (eo) for (int q = 0; q < s; q++) x[q] = y[q]; }
else {
fft0(n/2, 2*s, !eo, y, x);
for (int p = 0; p < m; p++) {
const complex_t wp = complex_t(cos(p*theta0), -sin(p*theta0));
for (int q = 0; q < s; q++) {
const complex_t a = y[q + s*(2*p + 0)];
const complex_t b = y[q + s*(2*p + 1)] * wp;
x[q + s*(p + 0)] = a + b;
x[q + s*(p + m)] = a - b;
}
}
}
}
void fft(int n, complex_t* x)
{
complex_t* y = new complex_t[n];
fft0(n, 1, 0, x, y);
delete[] y;
for (int k = 0; k < n; k++) x[k] /= n;
}
void ifft(int n, complex_t* x)
{
for (int p = 0; p < n; p++) x[p] = conj(x[p]);
complex_t* y = new complex_t[n];
fft0(n, 1, 0, x, y);
delete[] y;
for (int k = 0; k < n; k++) x[k] = conj(x[k]);
}
Type-2(DIF)
#include <complex>
#include <cmath>
typedef std::complex<double> complex_t;
void fft0(int n, int s, bool eo, complex_t* x, complex_t* y)
{
const int m = n/2;
const double theta0 = M_PI/s;
if (n == 1) { if (eo) for (int q = 0; q < s; q++) x[q] = y[q]; }
else {
fft0(n/2, 2*s, !eo, y, x);
for (int p = 0; p < m; p++) {
for (int q = 0; q < s; q++) {
const complex_t wq = complex_t(cos(q*theta0), -sin(q*theta0));
const complex_t a = y[q + s*(2*p + 0)];
const complex_t b = y[q + s*(2*p + 1)];
x[q + s*(p + 0)] = a + b;
x[q + s*(p + m)] = (a - b)*wq;
}
}
}
}
void fft(int n, complex_t* x)
{
complex_t* y = new complex_t[n];
fft0(n, 1, 0, x, y);
delete[] y;
for (int k = 0; k < n; k++) x[k] /= n;
}
void ifft(int n, complex_t* x)
{
for (int p = 0; p < n; p++) x[p] = conj(x[p]);
complex_t* y = new complex_t[n];
fft0(n, 1, 0, x, y);
delete[] y;
for (int k = 0; k < n; k++) x[k] = conj(x[k]);
}
Type-2(DIT)
#include <complex>
#include <cmath>
typedef std::complex<double> complex_t;
void fft0(int n, int s, bool eo, complex_t* x, complex_t* y)
{
const int m = n/2;
const double theta0 = M_PI/s;
if (n == 1) { if (eo) for (int q = 0; q < s; q++) y[q] = x[q]; }
else {
for (int p = 0; p < m; p++) {
for (int q = 0; q < s; q++) {
const complex_t wq = complex_t(cos(q*theta0), -sin(q*theta0));
const complex_t a = x[q + s*(p + 0)];
const complex_t b = x[q + s*(p + m)] * wq;
y[q + s*(2*p + 0)] = a + b;
y[q + s*(2*p + 1)] = a - b;
}
}
fft0(n/2, 2*s, !eo, y, x);
}
}
void fft(int n, complex_t* x)
{
complex_t* y = new complex_t[n];
fft0(n, 1, 0, x, y);
delete[] y;
for (int k = 0; k < n; k++) x[k] /= n;
}
void ifft(int n, complex_t* x)
{
for (int p = 0; p < n; p++) x[p] = conj(x[p]);
complex_t* y = new complex_t[n];
fft0(n, 1, 0, x, y);
delete[] y;
for (int k = 0; k < n; k++) x[k] = conj(x[k]);
}